Warning: mkdir(): No space left on device in /var/www/tg-me/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/physics_lib/--): Failed to open stream: No such file or directory in /var/www/tg-me/post.php on line 50
Physics.Math.Code | Telegram Webview: physics_lib/11731 -
Telegram Group & Telegram Channel
Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅_Π²_Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ΅_машинноС_ΠΎΠ±ΡƒΡ‡Π΅Π½ΠΈΠ΅_2023_RU_+_EN.zip
20.8 MB
πŸ“— Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π² Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ΅ машинноС ΠΎΠ±ΡƒΡ‡Π΅Π½ΠΈΠ΅ [2023] Π₯ΡƒΡ‚Ρ‚Π΅Ρ€, ΠšΠΎΡ‚Ρ‚Ρ…ΠΎΡ„Ρ„, Π’Π°Π½ΡˆΠΎΡ€Π΅Π½.

ΠžΡˆΠ΅Π»ΠΎΠΌΠ»ΡΡŽΡ‰ΠΈΠΉ успСх коммСрчСских ΠΏΡ€ΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ машинного обучСния (machine learning – ML) ΠΈ быстрый рост этой отрасли создали высокий спрос Π½Π° Π³ΠΎΡ‚ΠΎΠ²Ρ‹Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ ML, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠΆΠ½ΠΎ Π»Π΅Π³ΠΊΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Π±Π΅Π· ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… Π·Π½Π°Π½ΠΈΠΉ. Однако ΠΈ сСгодня успСх практичСского примСнСния Π² Ρ€Π΅ΡˆΠ°ΡŽΡ‰Π΅ΠΉ стСпСни зависит ΠΎΡ‚ экспСртов – людСй, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π²Ρ€ΡƒΡ‡Π½ΡƒΡŽ Π²Ρ‹Π±ΠΈΡ€Π°ΡŽΡ‚ подходящиС Π°Ρ€Ρ…ΠΈΡ‚Π΅ΠΊΡ‚ΡƒΡ€Ρ‹ ΠΈ ΠΈΡ… Π³ΠΈΠΏΠ΅Ρ€ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹ AutoML Π½Π°Ρ†Π΅Π»Π΅Π½Ρ‹ Π½Π° устранСниС этого ΡƒΠ·ΠΊΠΎΠ³ΠΎ мСста ΠΏΡƒΡ‚Π΅ΠΌ построСния систСм ML, способных ΠΊ автоматичСской ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΈ самонастройкС нСзависимо ΠΎΡ‚ Ρ‚ΠΈΠΏΠ° Π²Ρ…ΠΎΠ΄Π½Ρ‹Ρ… Π΄Π°Π½Π½Ρ‹Ρ…. Π’ этой ΠΊΠ½ΠΈΠ³Π΅ Π²ΠΏΠ΅Ρ€Π²Ρ‹Π΅ прСдставлСн Π²ΡΠ΅ΠΎΠ±ΡŠΠ΅ΠΌΠ»ΡŽΡ‰ΠΈΠΉ ΠΎΠ±Π·ΠΎΡ€ Π±Π°Π·ΠΎΠ²Ρ‹Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ машинного обучСния (AutoML). ИзданиС послуТит ΠΎΡ‚ΠΏΡ€Π°Π²Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ для изучСния этой быстро Ρ€Π°Π·Π²ΠΈΠ²Π°ΡŽΡ‰Π΅ΠΉΡΡ области; Ρ‚Π΅ΠΌ, ΠΊΡ‚ΠΎ ΡƒΠΆΠ΅ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ AutoML Π² своСй Ρ€Π°Π±ΠΎΡ‚Π΅, ΠΊΠ½ΠΈΠ³Π° пригодится Π² качСствС справочника.

πŸ“˜ Automated Machine Learning: Methods, Systems, Challenges [2019] Frank Hutter, Lars Kotthoff, Joaquin Vanschoren

This open access book presents the first comprehensive overview of general methods in Automated Machine Learning (AutoML), collects descriptions of existing systems based on these methods, and discusses the first series of international challenges of AutoML systems. The recent success of commercial ML applications and the rapid growth of the field has created a high demand for off-the-shelf ML methods that can be used easily and without expert knowledge. However, many of the recent machine learning successes crucially rely on human experts, who manually select appropriate ML architectures (deep learning architectures or more traditional ML workflows) and their hyperparameters. To overcome this problem, the field of AutoML targets a progressive automation of machine learning, based on principles from optimization and machine learning itself.



tg-me.com/physics_lib/11731
Create:
Last Update:

πŸ“— Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π² Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ΅ машинноС ΠΎΠ±ΡƒΡ‡Π΅Π½ΠΈΠ΅ [2023] Π₯ΡƒΡ‚Ρ‚Π΅Ρ€, ΠšΠΎΡ‚Ρ‚Ρ…ΠΎΡ„Ρ„, Π’Π°Π½ΡˆΠΎΡ€Π΅Π½.

ΠžΡˆΠ΅Π»ΠΎΠΌΠ»ΡΡŽΡ‰ΠΈΠΉ успСх коммСрчСских ΠΏΡ€ΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ машинного обучСния (machine learning – ML) ΠΈ быстрый рост этой отрасли создали высокий спрос Π½Π° Π³ΠΎΡ‚ΠΎΠ²Ρ‹Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ ML, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠΆΠ½ΠΎ Π»Π΅Π³ΠΊΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Π±Π΅Π· ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… Π·Π½Π°Π½ΠΈΠΉ. Однако ΠΈ сСгодня успСх практичСского примСнСния Π² Ρ€Π΅ΡˆΠ°ΡŽΡ‰Π΅ΠΉ стСпСни зависит ΠΎΡ‚ экспСртов – людСй, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π²Ρ€ΡƒΡ‡Π½ΡƒΡŽ Π²Ρ‹Π±ΠΈΡ€Π°ΡŽΡ‚ подходящиС Π°Ρ€Ρ…ΠΈΡ‚Π΅ΠΊΡ‚ΡƒΡ€Ρ‹ ΠΈ ΠΈΡ… Π³ΠΈΠΏΠ΅Ρ€ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹ AutoML Π½Π°Ρ†Π΅Π»Π΅Π½Ρ‹ Π½Π° устранСниС этого ΡƒΠ·ΠΊΠΎΠ³ΠΎ мСста ΠΏΡƒΡ‚Π΅ΠΌ построСния систСм ML, способных ΠΊ автоматичСской ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΈ самонастройкС нСзависимо ΠΎΡ‚ Ρ‚ΠΈΠΏΠ° Π²Ρ…ΠΎΠ΄Π½Ρ‹Ρ… Π΄Π°Π½Π½Ρ‹Ρ…. Π’ этой ΠΊΠ½ΠΈΠ³Π΅ Π²ΠΏΠ΅Ρ€Π²Ρ‹Π΅ прСдставлСн Π²ΡΠ΅ΠΎΠ±ΡŠΠ΅ΠΌΠ»ΡŽΡ‰ΠΈΠΉ ΠΎΠ±Π·ΠΎΡ€ Π±Π°Π·ΠΎΠ²Ρ‹Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ машинного обучСния (AutoML). ИзданиС послуТит ΠΎΡ‚ΠΏΡ€Π°Π²Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ для изучСния этой быстро Ρ€Π°Π·Π²ΠΈΠ²Π°ΡŽΡ‰Π΅ΠΉΡΡ области; Ρ‚Π΅ΠΌ, ΠΊΡ‚ΠΎ ΡƒΠΆΠ΅ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ AutoML Π² своСй Ρ€Π°Π±ΠΎΡ‚Π΅, ΠΊΠ½ΠΈΠ³Π° пригодится Π² качСствС справочника.

πŸ“˜ Automated Machine Learning: Methods, Systems, Challenges [2019] Frank Hutter, Lars Kotthoff, Joaquin Vanschoren

This open access book presents the first comprehensive overview of general methods in Automated Machine Learning (AutoML), collects descriptions of existing systems based on these methods, and discusses the first series of international challenges of AutoML systems. The recent success of commercial ML applications and the rapid growth of the field has created a high demand for off-the-shelf ML methods that can be used easily and without expert knowledge. However, many of the recent machine learning successes crucially rely on human experts, who manually select appropriate ML architectures (deep learning architectures or more traditional ML workflows) and their hyperparameters. To overcome this problem, the field of AutoML targets a progressive automation of machine learning, based on principles from optimization and machine learning itself.

BY Physics.Math.Code


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/physics_lib/11731

View MORE
Open in Telegram


Physics Math Code Telegram | DID YOU KNOW?

Date: |

To pay the bills, Mr. Durov is issuing investors $1 billion to $1.5 billion of company debt, with the promise of discounted equity if the company eventually goes public, the people briefed on the plans said. He has also announced plans to start selling ads in public Telegram channels as soon as later this year, as well as offering other premium services for businesses and users.

That growth environment will include rising inflation and interest rates. Those upward shifts naturally accompany healthy growth periods as the demand for resources, products and services rise. Importantly, the Federal Reserve has laid out the rationale for not interfering with that natural growth transition.It's not exactly a fad, but there is a widespread willingness to pay up for a growth story. Classic fundamental analysis takes a back seat. Even negative earnings are ignored. In fact, positive earnings seem to be a limiting measure, producing the question, "Is that all you've got?" The preference is a vision of untold riches when the exciting story plays out as expected.

Physics Math Code from ye


Telegram Physics.Math.Code
FROM USA